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FREE BOL LOOPS OF EXPONENT TWO

A. GRISHKOV, M. RASSKAZOVA, AND G. SOUZA DOS ANJOS∗

Abstract

A Bol loop is a loop that satisfies the identity x((yz)y) = ((xy)z)y. In this paper,

we give a construction of the free Bol loops of exponent two. We define a canonical

form of all their elements and describe their multiplication law based on this form.

Keywords: Bol loop, free loop.

1 Introduction

A loop consists of a nonempty set L with a binary operation ∗ such that, for each a, b ∈ L,

the equations a ∗ x = b and y ∗ a = b have unique solutions for x, y ∈ L, and there exists

an identity element 1 ∈ L satisfying 1 ∗ x = x = x ∗ 1, for any x ∈ L. A (right) Bol loop

is a loop that satisfies the (right) Bol identity

x((yz)y) = ((xy)z)y. (1)

One of the most interesting subvarieties of Bol loops is the variety B2 of Bol loops of

exponent two. Every loop in B2 is a Bruck loop, i.e., a Bol loop with the automorphic

inverse property ((xy)−1 = x−1y−1, for every x, y in the loop). Many constructions of non-

associative loops of B2 can be found in the literature (see [7, 8] for example), the minimal

such loop has order 8. Some of the most important problems involving loops of B2 are

those related to solvability and existence of simple loops (see [1, 3, 9, 10]). In [10], a class

of non-associative simple Bol loops of exponent 2 was constructed. The smallest loop in

this class, which is also the smallest non-associative simple loop in B2 ([3, Theorem 3]),

has order 96.

In this paper, we give a construction of free objects in the variety B2. Let B(X) be

the free Bol loop of exponent two with free set of generators X. We construct a subset

R(X) of B(X) such that every element b ∈ B(X) \ {1} has the canonical form b =

(...(b1b2)b3...)bm)bm−1)...)b2)b1, where bi ∈ R(X) and bi �= bi+1, for all i, and then we

describe the multiplication law of B(X) based on this form. Furthermore, we prove that

the nuclei and the center of B(X) are trivial.

∗This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior

- Brasil (CAPES) - Finance Code 001
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2 Preliminaries

Let L be a loop and x ∈ L. The bijections Lx, Rx : L → L defined by (y)Lx = xy and

(y)Rx = yx are called the left and right translations of x in L, respectively. The right

multiplication group of L is the group Mltr(L) = 〈Rx | x ∈ L〉 and the right inner mapping

group of L is Innr(L) = {φ ∈ Mltr(L) | (1)φ = 1}. The subgroup Innr(L) of Mltr(L)

is core-free, i.e., the only subgroup of Innr(L) that is normal in Mltr(L) is the trivial

subgroup {Id}, where Id is the identity mapping of L.

The left, middle and right nuclei of L, denoted respectively by Nλ(L), Nμ(L) and Nρ(L),

are defined by:

Nλ(L) = {a ∈ L | a(xy) = (ax)y ∀ x, y ∈ L},
Nμ(L) = {a ∈ L | x(ay) = (xa)y ∀ x, y ∈ L},
Nρ(L) = {a ∈ L | x(ya) = (xy)a ∀ x, y ∈ L}.

The nucleus of L is defined by N(L) = Nλ(L)∩Nμ(L)∩Nρ(L) and the center of L is the

set Z(L) = {a ∈ N(L) | ax = xa ∀ x ∈ L}. The nuclei of L are subgroups of L and the

center of L is an abelian subgroup of L.

Bol loops are loops that satisfy the identity (1). This class of loops contains Moufang

loops and groups. Furthermore, Bol loops are power-associative and right alternative, and

have the right inverse property. Other basic facts from loop theory and Bol loops can be

found in [4, 11].

The Baer correspondence ([2]) is an important tool in the study of Bol loops (cf. [1]).

From it, we obtain that Bol loops are related to twisted subgroups, as we can see in the

next proposition. A subset K of a group G is called a twisted subgroup of G if 1 ∈ K and

x−1, xyx ∈ K, for all x, y ∈ K.

Proposition 2.1. ([5, Proposition 5.2]) Let (G,H,B) be a Baer triple, i.e., G is a group,

H is a subgroup of G and B is a right transversal of H in G. If B is a twisted subgroup

of G, then B with the operation ∗ defined by

b ∗ b′ = c, where bb′ = hc, for some h ∈ H, (2)

is a Bol loop. Conversely, if (B, ∗) is a Bol loop and H is core-free, then B is a twisted

subgroup of G.

If L is a loop, the triple (G,H,B), where G = Mltr(L), H = Innr(L) and B = {Rx | x ∈
L}, is a Baer triple. In this condition, L is a Bol loop if and only if B is a twisted subgroup

of G [1, 6.1].

Let B be a Bol loop of exponent n and X be a subset of B. We say that X is a free set

of generators of B if X genetares B and every mapping between X and a Bol loop B′ of

exponent n can be extended to a homomorphism between B and B′. We say that B is a

free Bol loop of exponent n if it has a free set of generators.

Now consider B as a free Bol loop of exponent two. A subset T ⊂ B is a prebasis of B

if for every b ∈ B there exist b1, ..., bn ∈ T such that b = b1b2...bnbn−1...b2b1. Here and in

the following, we will write v = v1v2....vn if v = (...((v1v2)v3)...)vn. A subset T ⊂ B is
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an independent if for every a1, ..., am, b1, ..., bn ∈ T, such that bi �= bj and ap �= aq, for all

i, j, p, q, from a1a2...amam−1...a2a1 = b1b2...bnbn−1...b2b1, we have that n = m and ai = bi,

i = 1, ..., n. A subset T ⊂ B is a basis of B if T is an independent prebasis of B.

A group G is a free 2-group if it is a free product of cyclic groups of order two, i.e., it has

the form G =
∏

x∈T � < x|x2 = 1 >.

3 Construction of a basis of free Bol loops of expo-

nent two

Let X be a finite ordered set of letters and P = P (X) be the set of all non-associative

words on X. We denote the empty word by 1. For v ∈ P , by Sub(v) we denote the set of

all subwords of v. Note that if v = v1v2, then Sub(v) = {v} ∪ Sub(v1) ∪ Sub(v2).

For v ∈ P , the lenght of v, denoted by |v|, is the number of letters in the word v. Note

that |1| = 0.

Let C(X) = {uu, (uv)v | u, v ∈ P} and W = W (X) = {v ∈ P |Sub(v) ∩ C(X) = ∅}.
Define the mapping π : P → W , where, for v ∈ P , π(v) is given by induction on |v| using
the following rules:

(i) π(x) = x, if x ∈ X,

(ii) If u, v ∈ W , then

π(uv) =

⎧
⎨

⎩

1, if u = v,

a, if u = av,

uv, if uv ∈ W,

(iii) If u �∈ W or v �∈ W , then π(uv) = π(π(u)π(v)).

Notice that in the case (iii) we get |π(u)π(v)| < |uv|. Hence this definition is correct.

Lemma 3.1. Let u, v, w, v1, ..., vn ∈ P and a ∈ W . Then:

(a) π(uv) = π(π(u)π(v)).

(b) π(uv.v) = π(u.vv) = π(u).

(c) π(u) = π(v) if and only if π(uw) = π(vw).

(d) If π(uv1v2...vn) = π(v), then π(u) = π(vvn...v2v1).

(e) If π(v1v2...vn) = a, then π(avn...v2v1) = 1.

(f) If π(uv) = π(uw), then π(v) = π(w).

Proof. The item (a) follows from the definition of π. The item (c) is a consequence of (a)

and (b), and the items (d) and (e) are consequences of (b) and (c). Let us prove (b) and

(f).

(b) By (a), we have π(uv.v) = π(π(π(u)π(v))π(v)) and π(u.vv) = π(u). If π(u)π(v) ∈ W ,

then π(π(π(u)π(v))π(v)) = π((π(u)π(v))π(v)) = π(u). If π(u) = cπ(v), then π(π(π(u)π(v))π(v)) =

π(cπ(v)) = π(u).

(f) By (a), we only have to prove the case where u, v, w ∈ W . If either 1 ∈ {u, v} or

u = v, the result is trivial. Suppose that u, v ∈ W \ {1} and u �= v. If u = cv, for some

c �= 1, then π(uw) = c. Since |c| < |u|, we have uw �∈ W . Thus u = dw, for some d �= 1,

and we have cv = u = dw. Therefore w = v.
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Now suppose that uv ∈ W . Since |uv| > |u|, it follows that uw ∈ W . Hence uw = uv

and we have w = v.

Lemma 3.2. Let v = v1v2v3...vm, where vi ∈ W and vi �= vi+1, for i = 1, ...,m − 1. If

|π(v)| < |v|, then there are three possibilities:

(a) v1v2 ∈ W and vi = v1v2v3...vi−1, for some i > 2,

(b) There exists v′1 ∈ W such that v1 = v′1vjvj−1...v3v2, where 1 < j < m and v′1vj+1 ∈ W,

(c) v1 = v′1vmvm−1...v2, for some v′1 ∈ W .

Proof. If v1v2 ∈ W , then there exists i ∈ {3, ...,m} such that v1v2...vi−1 ∈ W and

v1v2...vi−1vi �∈ W . Since vi �= vi+1, we have vi = v1v2v3...vi−1. When v1v2 �∈ W we

have that v1 = αv2, for some α ∈ W . If v1 �= βvmvm−1...v2, for every β ∈ W , then there

exist v′1 ∈ W and j ∈ {2, 3, ...,m − 1} such that v1 = v′1vjvj−1...v3v2 and v′1 �= γvj+1, for

every γ ∈ W . Hence v′1vj+1 ∈ W.

Remark. In the Lemma 3.2 it is possible that v′1 = 1.

The following result is a consequence of Lemma 3.2.

Corollary 3.3. Let v = v1v2v3...vm, where vi ∈ W and vi �= vi+1, for i = 1, ...,m − 1.

There are four possibilities:

(a) π(v) = 1,

(b) π(v) = vlvl+1...vm, where π(v1v2...vl−1) = 1 and 1 ≤ l ≤ m,

(c) π(v) = v′lvj+1vj+2...vm, where π(v1v2...vl−1) = 1, vl = v′lvjvj−1...vl+1, v′l �= 1 and

1 ≤ l < j < m,

(d) π(v) = v′l, where π(v1v2...vl−1) = 1, vl = v′lvmvm−1...vl+1, v
′
l �= 1 and 1 ≤ l < m.

Consider X = {x1, x2, ..., xr}. We define an order > in W inductively by the following

rules:

(i) xi > xj, if i > j,

(ii) u > v, if |u| > |v|,
(iii) If |u| = |v|, u = u1u2, v = v1v2, then u > v in the following cases:

(iii.1) u2 > v2,

(iii.2) u2 = v2 and u1 > v1.

Definition 3.4. For any y ∈ P there exists unique canonical decomposition y = y1y2...ym−1y
′
m

such that |y1| = 1. We denote yt = y′mym−1...y1. If y
′
m = ykyk−1...ym with |yk| = 1, then

(yt)t = ytt = y1y2...ym....yk and yttt = ykyk−1...ym....y1 = yt.

Definition 3.5. In notation above, define the following:

(i) ||y|| = m,

(ii) y∗ = {x ∈ P |xtt = yt, or xtt = ytt}.
(iii) y(i) = ykyk−1...yi(y1y2...yi−1), i = 3, ..., k,

(iv) y(i) = y1y2...yi−1(ykyk−1...yi), i = 2, ..., k − 1,

Example 3.6. Let X = {a, b, c} and y = (a(bc))((ca)b). Then the canonical decom-

position of y is y = y1y2y
′
3, where y1 = a, y2 = bc, y′3 = (ca)b = y5y4y3, and hence
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||y|| = 3 and ||yt|| = ||ytt|| = 5. Furthermore, yt = (((ca)b)(bc))a, ytt = (((a(bc))b)a)c,

y(3) = y5y4y3(y1y2), y(4) = y5y4(y1y2y3), y(5) = y5(y1y2y3y4), y
(2) = y1(y5y4y3y2), y

(3) =

(y1y2)(y5y4y3), and y(4) = (y1y2y3)(y5y4). Note that y = y(3) and

y∗ = {yt, ytt, y(3), y(4), y(5), y(2), y(3), y(4)}.

Define the set of symmetric words of P by S(X) = {y1y2...ymym+1ym...y1 | yi ∈ P,m > 0}.

Lemma 3.7. In notation above, we have:

(a) y∗ = {ytt = ytttt, yt, y(i+1), y
(i), i = 2, ..., k − 1} and |{ytt, y(i)|i = 2, ..., k − 1}| =

|{yt, y(i)|i = 3, ..., k}| = k − 1.

(b) If yt = ytt, then y∗ = {ytt, y(i) = y(k−i+2), i = 2, ..., k − 1} and |y∗| = k − 1.

(c) If yt �= ytt, then |y∗| = 2(k − 1) and y∗ ∩ S(X) = ∅.
(d) If yt, ytt ∈ W, then y∗ ⊂ W .

(e) min{yt, ytt} = min{x|x ∈ y∗}.

Proof. (a) It is immediate that {yt, ytt, y(i+1), y
(i), i = 2, ..., k − 1} ⊂ y∗ and |{ytt, y(i)|i =

2, ..., k − 1}| = |{yt, y(i)|i = 3, ..., k}| = k − 1.

Let z ∈ y∗. We have that ztt = z1z2...zr, where z = z1z2...z
′
l, z′l = zrzr−1...zl and

|z1| = |zr| = 1. Since |z1| = |zr| = 1 and ztt ∈ {yt, ytt}, we have k = r. If ztt = ytt, then

zi = yi, for all i, and so z ∈ {ytt, y(i)|i = 2, ..., k − 1}. If ztt = yt, then zk+1−i = yi, for all

i, and so z ∈ {yt, y(i)|i = 3, ..., k}. Therefore y∗ = {yt, ytt, y(i+1), y
(i), i = 2, ..., k − 1}.

(b) If yt = ytt, then y(i) = y(k−i+2), for all i ∈ {2, ..., k − 1}. Thus the claim follows from

(a).

(c) If y(i) = y(j), for some i and j, then a simple calculation shows that j = k − i+ 2 and

yl = yk+1−l, for all l, and so yt = ytt. Hence |y∗| = 2(k−1) by (a). By a similar argument,

we can get that y(i), y(i+1) �∈ S(X), for all i.

(d) Let y(i) = y1y2...yi−1(ykyk−1...yi) ∈ y∗. Since yt, ytt ∈ W, we have y1y2...yi−1, ykyk−1...yi ∈
W , yi−1 �= yi and yi−1 �= ykyk−1...yi. Then y1y2...yi−1 �= α(ykyk−1...yi), for all α ∈ P .

Hence y(i) ∈ W . By similar arguments, we can conclude that y(j) ∈ W , for all j. There-

fore, y∗ ⊂ W .

(e) It is clear that ytt = min{ytt, y(i)|i = 2, ..., k − 1} and yt = min{yt, y(i)|i = 3, ..., k}.
Thus the claim follows from (a).

Remark. We can define an equivalence relation ∼ on P (X) by x ∼ y if and only if

x∗ ∩ y∗ �= ∅. The equivalence classes of this relation can be of three types: O1, O2 and

O3, where:

(i) O1 ⊂ W (X) \ S(X),

(ii) O2 ⊂ W (X) and yt = ytt ∈ S(X), for y ∈ O2,

(iii) O3 �⊂ W (X).

Definition 3.8. For y ∈ W , let y0 = min{yt, ytt}. Define the set D = D(X) =

{y0|y, y0, yt0 ∈ W, yt0 �= y0}.

Example 3.9. If X = {a, b} with b > a and Wn = {y ∈ W | |y| = n}, then
D ∩W5 = {a, b, ba, ((ba)b)a, (b(ab))a, (b(ba))a, ((ba)(ab))a, ((a(ba))b)a, ((b(ab))a)b,
((b(ba))b)a, (b(a(ab)))a, (b(a(ba)))a, (b(b(ab)))a, (b(b(ba)))a, (b((ab)a))a, (b((ba)b))a}.
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Definition 3.10. Define the following sets:

(i) R1 = X = {x1, x2, ..., xr},
(ii) Rn = Rn−1 ∪ {y ∈ D(X) | |y| ≤ n, y = u1u2...um, ui ∈ Rn−1, i = 1, ...,m}, for n > 1,

(iii) R(X) =
⋃

n∈N

Rn.

Notice that X ⊂ R(X) ⊂ W and R(X) ∩ S(X) = ∅.

Corollary 3.11. Let b = b1b2...bn ∈ W, be such that b1 ∈ X. If b ∈ R(X), then

b < bt, b∗ ⊂ W, bn ∈ X and bi ∈ R(X), for i = 1, ..., n. (3)

Example 3.12. If X = {a, b} with b > a, then:

R5 = {a, b, ba, ((ba)b)a, (b(ba))a, ((a(ba))b)a, ((b(ba))b)a}.
Note that (b((ba)b))a, (b((ab)a))a ∈ (D ∩W5) \R5, since (ba)b, (ab)a ∈ S(X).

Definition 3.13. B(X) = {1} ∪ {y ∈ W (X)|y = y1y2...yn, yi ∈ R(X)}.

Remark. Let y = y1y2...yn ∈ P be such that yi ∈ R(X), for all i. By Lemma 3.2, y ∈ W

if and only if y1y2...yi−1 �= yi �= yi+1, for i ∈ {1, ..., n− 1}.

4 Proof that R(X) is a basis of B(X).

For proof that R(X) is a basis of B(X) we need the detailed information about π(b) if

b = b1...bk...b1, bi �= bi+1 and bi ∈ R(X). We begin with the following simple fact.

Lemma 4.1. Let b1, b2, ...bk ∈ P . Then π(b1b2...bkbk−1...b1) = 1 if and only if π(bk) = 1.

Proof. We have π(b1...bk...b1) = π(π(b1)...π(bk)...π(b1)). If π(bk) = 1, then it is clear that

π(b1...bk...b1) = 1.

Now suppose that π(b1...bk...b1) = 1. Omitting all bj, bj+1 such that π(bj) = π(bj+1), we

get that π(π(b1)...π(bk)...π(b1)) = π(a1a2...arar−1...a1), where r ≤ k, ar = π(bk), ai �= ai+1

and ai ∈ W \ {1}, for all i < r.

We will prove that ar = 1 by induction on r. Consider r > 1 and define ar+i = ar−i, for all

i. Let l be the minimal such that π(a1a2...al) = 1. If l < 2r − 1, then π(al′al′−1...a1) = 1,

where l′ = 2r − 1 − l, and so π(a1a2...al′) = 1 by Lemma 3.1. Thus we only have to

consider three cases:

(i) l < r. Then π(al+1...ar...al+1) = 1, and hence ar = 1 by the induction hypothesis.

(ii) l = r. Then π(a1a2...ar) = π(a1a2...ar−1) = 1, and we get ar = 1.

(iii) l = 2r − 1. By Lemma 3.2, if ar �= 1, then either a1 = a1a2...arar−1...a2 or a1 =

vasas−1...a2, for some v �= 1 and s > 0 such that 2(s − 1) = 2r − 3, but both cases are

impossible. Hence ar = 1.

Lemma 4.2. Let n > 1 and c, w1, w2, ..., wn ∈ W \ {1} be such that cw1 ∈ W , wi ∈
Sub(c) ∪ Sub(w1) and wi−1 �= wi, for all i. Then cw1w2...wn ∈ W .
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Proof. For 1 ≤ m < n, suppose that cw1w2...wm ∈ W . Since wm+1 ∈ Sub(c)∪Sub(w1), we

have that wm+1 �= cw1w2...wm. Since wm �= wm+1, there is no β such that cw1w2...wm =

βwm+1. Hence cw1w2...wmwm+1 ∈ W .

Lemma 4.3. Let k > 1 and w = w1w2...wkwk−1...w1 ∈ S be such that wi ∈ W \ {1},
w1w2 ∈ W and wi �= wi+1 for all i. There are two possibilities:

(a) π(w) = w or

(b) There exists l such that 3 ≤ l ≤ k and wl = w1w2...wl−1.

Proof. If k = 2, then w1w2w1 ∈ W since w1w2 �= αw1, for all α ∈ W . Hence π(w) = w.

Suppose that k ≥ 3 and π(w) �= w, and define wk+i = wk−i, for all i. By Lemma 3.2 (a),

there exists l such that 2 < l ≤ 2k − 1 and wl = w1w2...wl−1. Since wl is not a proper

subword of itself, we must have l ≤ k.

Proposition 4.4. Let b = b1b2...bkbk−1...b1 ∈ S be such that b1 ∈ W \ {1}, bi ∈ R and

bi−1 �= bi for all i > 1. Then π(b) = λb1, where λ = 1 implies that k = 1 or b1 �∈ R.

Moreover, if b1 ∈ R, then π(b) ∈ R if and only if k = 1.

Proof. If k ∈ {1, 2} it is easy to see that the claim holds. Suppose that the claim holds

for all k′ < k, where k ≥ 3. First we will prove the following lemmas.

Lemma 4.5. Suppose that bm = b1b2...bm−1, where 3 ≤ m ≤ k. Then π(b) = εbm−1...b2b1 �∈
R.

Proof. We have three cases:

(i) m = k. Thus bk = b1b2...bk−1, and hence π(b) = π(bk−1...b2b1). Since bk−1...b2b1 ∈ b∗k, it

follows that π(b) = bk−1...b2b1. Since bk ∈ R and R∩S = ∅, we have π(b) = bk−1...b2b1 �∈ R.

(ii) m = k − 1. Thus bk−1 = b1b2...bk−2 and π(b) = π(bkbk−1...b1). Since |bk−1| > 1

and bk ∈ R, we have bkbk−1 ∈ W by (3). By Lemma 4.2, bkbk−1...b1 ∈ W , and then

π(b) = bkbk−1...b1. Since b1b2...bk−1 �∈ W , it follows that b1b2...bk ∈ π(b)∗ \W , and hence

π(b) �∈ R by (3).

(iii) m < k − 1. Thus π(b) = π(bm+1...bkbk−1...bm+1...b2b1). By the induction hypothesis,

π(bm+1...bkbk−1...bm+1) = λbm+1, where λ �= 1 because m + 1 < k and bm+1 ∈ R. Then

π(b) = π(bm+1...bkbk−1...bm+1...b2b1) = π(λbm+1...b2b1). If bm = λbm+1, then π(b) =

π(bm−1...b2b1). Since bm−1...b2b1 ∈ b∗m, it follows that π(b) = bm−1...b2b1. Furthermore,

since bm ∈ R and bm−1...b2b1 �= bm, we have π(b) = bm−1...b2b1 �∈ R.

When λbm+1bm ∈ W we have that λbm+1bm...b2b1 ∈ W by Lemma 4.2. Then π(b) =

λbm+1...b2b1. Since b1b2...bm �∈ W , we have b1b2...bm+1λ ∈ π(b)∗ \W , and hence π(b) �∈ R

by (3).

Therefore, we proved Lemma 4.5.

Define bk+i = bk−i, for all i. Note that b = b2k−1b2k−2...b1 = b1b2...b2k−1.
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Lemma 4.6. Suppose that for n ∈ {2, 3, ..., k}, b1 ∈ R and we have one of the following

situations:

(a1) bn = b′nb1b2...bn−1, where b′n �= 1, or

(a2) bn = b2...bn−1.

Then π(b2k−1b2k−2...bn+1) �= 1.

Proof. Suppose by contradiction that π(b2k−1b2k−2...bn+1) = 1. We have two cases:

(i) n < k. Let v = b1b2...bn. Then π(vbn+1...bk...bn+1) = 1, and so π(v) = π(bn+1...bk...bn+1)

by Lemma 3.1. By the induction hypothesis, we get that π(v) = λbn+1, where λ = 1 if

and only if n+1 = k. Applying Corollary 3.3 to the word v = b1b2...bn, we have two cases

π(v) = αbn (in the cases (b) and (c)) or π(v) = b′l, π(b1...bl−1) = 1, bl = b′lbnbn−1...bl+1

(case (d)). We note that the case (a) is impossible since π(v) �= 1.

Let π(v) = αbn. If α = 1, then λbn+1 ∈ R. Since b1 ∈ R, we get that n + 1 = k by the

induction hypothesis, and hence bn = π(v) = bn+1, which is a contradiction. Suppose that

α �= 1. Since bn �= bn+1, it follows that λ = 1, and then |bn| = 1 by (3), which contradicts

(a1) and (a2).

Let π(v) = b′l and l = 1. Then b1 = λbn+1bnbn−1...b2. In (a1) this does not occur since

b1 ∈ Sub(bn). Now consider the case (a2). Since π(b2b3...bn) = 1 in this case, we get that

bt1 ∈ b∗1 \W , and then b1 �∈ R by (3), a contradiction.

If π(v) = b′l and 1 < l < n, π(b1b2...bl−1) = 1 and bl = b′lbnbn−1...bl+1. Then we have a

contradiction since bl ∈ Sub(bn) in both cases (a1) and (a2).

(ii) n = k. By assumption, we have that π(b1b2...bk−1) = 1, and then π(bk−1...b2b1) = 1 by

Lemma 3.1. First, consider the case (a1). Since bk = b′kb1b2...bk−1 and π(bk−1...b2b1) = 1,

it follows that btk ∈ b∗k \W , and then bk �∈ R by (3), a contradiction.

Now consider the case (a2). Since bk = b2...bk−1, then |bk−1| = 1 by (3), and so bk−1bk−2 ∈
W . Since π(bk−1...b2b1) = 1, it follows that there exists l such that bl = bk−1bk−2...bl+1

by Lemma 3.2. If l > 1, then π(bk−1bk−2...bl+1bl) = 1, and so btk ∈ b∗k \ W , which is a

contradiction. If l = 1, then b1 = btk, which is a contradiction since b1, bk ∈ R.

Therefore, Lemma 4.6 is proved.

Now we can finish the proof of Proposition 4.4. First, let us prove that π(b) = λb1, for

some λ ∈ W , where λ �= 1 if b1 ∈ R. By Lemma 4.1, we have that π(b) �= 1, and then

there are three possibilities according to Corollary 3.3:

(i) π(b) = b′nbm...b1, where bn = b′nbm+1bm+2...bn−1, 1 ≤ m < n ≤ 2k − 1 and b′n �= 1 if

m = 1. Thus we have the desired result.

(ii) π(b) = b′n, where bn = b′nb1b2...bn−1, 1 < n < 2k− 1, b′n �= 1 and π(b2k−1b2k−2...bn+1) =

1. Since bn can not be a proper subword of itself, we get n ≤ k. Furthermore, we get that

b1 ∈ R by (3). Then we have a contradiction with Lemma 4.6.

(iii) π(b) = bnbn−1...b1, where π(b2k−1b2k−2...bm+1) = 1, bm = bn+1bn+2...bm−1 and 1 ≤ n <

m ≤ 2k− 1. If n > 1 or n = 1 and b1 �∈ R, then we have the desired result. Suppose that
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π(b) = b1 ∈ R. We have two cases:

(iii.1) |b2| > 1. By (3), b1 can not be of the form b′1b2, and then b1b2 ∈ W . By Lemmas

4.3 and 4.5, we get that π(b) �∈ R, which is a contradiction.

(iii.2) |b2| = 1. Note that bm = b2b3...bm−1. Since bm can not be a proper subword of itself

and b2b3...bk...b2 �∈ R, it follows that m ≤ k. Then π(b2k−1b2k−2...bm+1) �= 1 by Lemma

4.6, which is a contradiction.

Now we only have to prove that π(b) �∈ R when b1 ∈ R. Consider that b1 ∈ R and

π(b) = λb1, where λ �= 1. If |b1| > 1, then π(b) �∈ R by (3). If |b1| = 1, then b1b2 ∈ W ,

and as in (iii.1) we get that π(b) �∈ R.

Corollary 4.7. Let b = b1b2...bkbk−1...b1 ∈ S and g = g1g2...gngn−1...g1 ∈ S be such that

bi, gj ∈ R, bi−1 �= bi and gj−1 �= gj, for all i and j. If π(b) = π(g), then b1 = g1.

As a consequence of Proposition 4.4 and Lemma 4.5 we have the following result:

Corollary 4.8. Let b = vb1b2...bkbk−1...b1v ∈ S be such that v ∈ W \{1}, vb1 ∈ W , bi ∈ R

and bi−1 �= bi for all i > 1. There are two possibilities:

(a) π(b) = b,

(b) There exists m such that 2 ≤ m ≤ k and π(b) = εbm−1...b1v, where ε ∈ W .

Lemma 4.9. Let b = vb1v ∈ S and g = vg1g2...gngn−1...g1v ∈ S be such that v ∈ W \{1},
v �= b1, v �= g1, b1, gj ∈ R, and gj−1 �= gj, for all j. If π(b) = π(g), then b = g.

Proof. If n = 1, then π(vb1) = π(vg1). By Lemma 3.1 (f), b1 = g1, and hence b = g. Now

suppose that n > 1 and the claim holds for every n′ < n. We will prove this result in two

steps:

(i) First we will prove that there exists α ∈ W \ {1} such that αb1α ∈ W ,

π(αb1g1g2...gngn−1...g1b1α) = αb1α and either αb1 �= g1 or α = v. We have two cases:

(i.1) v = αb1, with α �= 1. Then π(vb1v) = π(αv) = π(vg1g2...gngn−1...g1v), and hence by

Lemma 3.1 (c):

π(α) = π(vg1g2...gngn−1...g1). (4)

Using Lemma 3.1 (c) and v = αb1 in (4), we get π(αb1α) = π(αb1g1...gn...g1b1α).

(i.2) vb1v ∈ W . By π(vg1g2...gngn−1...g1v) = π(vb1v) = vb1v and Lemma 3.1 (e), we get

π(vb1g1g2...gngn−1...g1v) = 1. Thus

π(vb1g1...gn...g1b1v) = π(vb1g1...gn...g1vvb1v) = π(π(vb1g1...gn...g1v)π(vb1v)) = vb1v

and we put α = v.

(ii) Now consider α ∈ W \ {1} as in (i). If b1 = g1, then

π(αb1g1g2...gn...g1b1α) = π(αg2...gn...g2α) = αb1α.
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If α �= g2, then by induction b1 = g2...gn...g2. Since b1 ∈ R and R ∩ S = ∅, then n = 2

and b1 = g2, which is a contradiction with b1 = g1 �= g2. In the case α = g2 and n > 2, we

get π(g3...gn...g3) = αb1α = g2b1g2. By Corollary 4.7, we have g3 = g2, a contradiction.

Finally, if α = g2 and n = 2, we have π(g2) = g2b1g2. Since g2 ∈ R, hence b1 = g2, which

is a contradiction with b1 = g1.

Suppose b1 �= g1. By the choice of α, either αb1g1 ∈ W or g1 = αb1. We have two cases:

(ii.1) g1 = αb1. Then αb1α = π(αb1g1...gngn−1...g1b1α) = π(g2...gngn−1...g1b1α). Hence

by Lemma 3.1 (c) we get π(g2...gngn−1...g1) = α and αg1 = αb1α ∈ W . Using the same

lemma again, we get π(g2...gngn−1...g2) = αg1. If n = 2, then g2 = αg1 ∈ R, and hence

g1 ∈ X, which is a contradiction with g1 = αb1. Then n > 2. By Proposition 4.4, there

exists λ �= 1 such that αg1 = λg2, and then g1 = g2, a contradiction.

(ii.2) αb1g1 ∈ W . Note that αb1α �= αb1g1...gn...g1b1α. Then there exists m such that

1 < m ≤ n and gm = αb1g1...gm−1 by Lemma 4.3. We have three more cases:

(ii.2.1) m = n. Then αb1α = π(gn−1...g1b1α). Since gn−1...g1b1α ∈ g∗n and gn ∈ R, it

follows that αb1α = gn−1...g1b1α, which is a contradiction because g∗n ∩ S(X) �= ∅.
(ii.2.2) m = n− 1. Then αb1α = π(αb1g1...gn...g1b1α) = π(gngn−1...g1b1α). Since |gn−1| >
1 and gn ∈ R, we have gngn−1 ∈ W . By Lemma 4.2, gngn−1...g1b1α ∈ W . Thus αb1α =

gngn−1...g1b1α, and hence α = gngn−1...g1, which is a contradiction because α ∈ Sub(gn−1).

(ii.2.3) m < n − 1. Then αb1α = π(gm+1...gn...g1b1α). By Proposition 4.4, there exists

λ �= 1 such that αb1α = π(λgm+1gm...g1b1α) and λgm+1 ∈ W . If gm = λgm+1, similarly to

(ii.2.1) we get a contradiction. If λgm+1gm ∈ W , similarly to (ii.2.2) we get a contradiction.

Lemma 4.10. Let b = vb1b2...bkbk−1...b1v ∈ S and g = vg1g2...gngn−1...g1v ∈ S be such

that v ∈ W \ {1}, v �= b1, v �= g1, bi, gj ∈ R, bi−1 �= bi and gj−1 �= gj, for all i and j. If

π(b) = π(g), then b = g.

Proof. We will prove this result by induction on k. We can consider n ≥ k > 1. First we

will prove the affirmation 1:

Affirmation 1. If b1 = g1, then b = g.

Proof of affirmation 1: We have that π(vb1b2...bkbk−1...b2) = π(vb1g2...gngn−1...g2). Then

π(π(vb1)b2...bkbk−1...b2π(vb1)) = π(π(vb1)g2...gngn−1...g2π(vb1)). If b2 �= π(vb1), then g2 �=
π(vb1) by Proposition 4.4 and Corollary 4.7, and hence the result follows by the induction

hypothesis.

Suppose that b2 = π(vb1). If k = 2, then π(b2g2...gngn−1...g2b2) = b2. By Proposition

4.4, we must have b2 = g2 and n = 2, and then b = g. Using a similar argument,

we get that k = 3 implies b = g. Now consider k > 3. Then π(b3...bkbk−1...b3) =

π(b2g2g3...gngn−1...g3g2b2). By b2 �= b3 and Corollary 4.7, we must have b2 = g2 and

b3 = g3, and hence the desired result follows by the induction hypothesis.

Therefore, affirmation 1 is proved.

By Proposition 4.4, there exist α, β ∈ W such that π(vb1...bk...b1v) = αv and π(vg1...gn...g1v) =

βv. We have ten cases depending on α and β:
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(i) α = 1 (or β = 1).

(ii) αb1, βg1 ∈ W and α, β �= 1.

(iii) α = α1b1 and β = β1g1, where α1 �= 1 �= β1.

(iv) α = b1 and β = g1.

(v) α = b1, β �= 1 and βg1 ∈ W .

(vi) α = α1b1 and β = g1, where α1 �= 1.

(vii) α �= 1, αb1 ∈ W and β = g1.

(viii) α = b1 and β = β1g1, where β1 �= 1.

(ix) α = α1b1 and βg1 ∈ W , where α1 �= 1 �= β.

(x) αb1 ∈ W and β = β1g1, where α �= 1 �= β1.

We note that if vb1 ∈ W , then π(vb1...bk...b1v) = εb1v by Corollary 4.8. Analogously,

if vg1 ∈ W , then π(vg1...gn...g1v) = ηg1v. Hence in the cases (i) and (ii) we have

vb1, vg1 �∈ W . Since v ∈ W , then v = v′b1 = v′′g1, for some v′, v′′ ∈ W , and so b1 = g1.

The same equality b1 = g1 we have in the cases (iii) and (iv). Then in those cases the

claim follows by affirmation 1.

Case (v): Since βg1 ∈ W , then vg1 �∈ W by Corollary 4.8. Hence v = β′g1, for some β′ �= 1.

We have that π(vb1...bk...b1v) = b1v, hence by Lemma 3.1 (c) we get π(vb1b2...bk...b2) = 1

and π(b2...bkbk−1...b2b1v) = 1. Using the same lemma again, we get π(b2...bkbk−1...b2) =

π(vb1). If vb1 �∈ W , then v = γb1 = β′g1, for some γ �= 1, and so b1 = g1. By affirmation 1,

Lemma 4.10 is proved. Let vb1 ∈ W . By Proposition 4.4, we get π(b2...bk...b2) = λb2 = vb1.

If k > 2, then λ �= 1, and hence b1 = b2, a contradiction. Then k = 2 and b2 = vb1. From

π(vg1...gn...g1v) = b1v, we have π(vg1...gn...g1) = b1 and π(vg1...gn...g1b1) = 1 by Lemma

3.1 (c). Hence π(b1g1...gn...g1v) = 1 and π(b1g1...gn...g1) = v. Then π(b1g1...gn...g1b1) =

vb1 = b2. If b1 �= g1, then b2 �∈ R by Proposition 4.4, which is a contradiction. In the case

b1 = g1 we have Lemma 4.10 by affirmation 1.

Case (vi): We have that g1 = α1b1 and π(vg1g2...gngn−1...g2) = 1. Then π(g2...gngn−1...g2) =

π(vg1). We have two cases:

(vi.1) n = 2. Then g2 = π(vg1). Since g1v = π(vb1...bk...b1v), we have that π(g1b1...bk...b1v) =

1, and then π(g1b1...bk...b1g1) = π(vg1) = g2, which is a contradiction with Proposition

4.4.

(vi.2) n > 2. By Proposition 4.4, there exists λ �= 1 such that λg2 = π(vg1). Since

g1 �= g2, if follows that vg1 �∈ W . Then there exists γ �= 1 such that v = γg1. Since

π(vb1b2...bkbk−1...b1v) = g1v, we have that π(g1b1b2...bkbk−1...b1g1) = γ. By Proposition

4.4, there exists λ′ �= 1 such that λ′g1 = γ, which is a contradiction because v = γg1 ∈ W .

The cases (vii) and (viii) are analogous to the cases (v) and (vi), respectively.

Case (ix): We have that π(vb1b2...bkbk−1...b2α1) = 1. Then π(α1b2...bkbk−1...b2b1) = v.

Since π(vg1g2...gngn−1...g1v) = α1b1v, it follows that π(α1b1g1g2...gngn−1...g1) = v, and

then π(α1b2...bkbk−1...b2α1) = π(α1b1g1g2...gngn−1...g1b1α1).

If b1 = g1, then the claim follows by affirmation 1. Suppose that b1 �= g1. By Proposition
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4.4 and Corollary 4.7, we have that α1 �= b2, and hence the claim follows by the induction

hypothesis.

Case (x): By Corollary 4.8, we have vb1 �∈ W . Then there exists a �= 1 such that v = ab1.

Since π(vb1b2...bkbk−1...b1v) = π(vg1g2...gngn−1...g1v), it follows that π(ab2...bkbk−1...b1) =

π(ab1g1g2...gngn−1...g1). Thus π(ab2...bkbk−1...b2a) = π(ab1g1g2...gngn−1...g1b1a), and the

rest of the proof is analogous to (ix).

As a consequence of Proposition 4.4, Corollary 4.7 and Lemma 4.10, we have the following

result.

Corollary 4.11. Let b = b1b2...bkbk−1...b1 ∈ S and g = g1g2...gngn−1...g1 ∈ S be such that

bi, gj ∈ R, bi−1 �= bi and gj−1 �= gj, for all i and j. If π(b) = π(g), then b = g.

Theorem 4.12. For every g ∈ B(X) \ {1} there exist unique g1, ..., gm ∈ R(X) such that

g = π(g1g2...gmgm−1...g1) and gi �= gi+1, for i = 1, ...,m− 1.

Proof. Let g = a1a2...as ∈ B, where as = b1b2...bl, |a1| = |b1| = 1, and ai, bj ∈ R, for all i

and j. First we will prove by induction on |g| that there exists s(g) = g1g2...gmgm−1...g1
such that π(s(g)) = g and gi �= gi+1, for i = 1, ...,m−1. If |g| = 1 or g ∈ R, then s(g) = g.

Now suppose that |g| > 1 and g �∈ R. We have four cases:

(i) gt, gtt ∈ W and gt �= gtt. Then

s(g) =

{
asas−1...a2a1g

ta1...as−1as, if gt ∈ R,

asb1b2...blg
ttbl...b1as, if gtt ∈ R.

(ii) gt ∈ W ∩ S. Then there exist c1, ..., cr ∈ R such that gt = c1c2...crcr−1...c1. Thus

g = π(asas−1...a2a1c1c2...crcr−1...c1a1...as−1as), and it is clear that we can get s(g) from

this equation.

(iii) gt �∈ W . Since π(g) �= 1, we have that π(gt) �= 1 by Lemma 3.1. Then 1 ≤ |π(gt)| <
|g|. It is not difficult to see that π(gt) ∈ B. By the induction hypothesis, there exist

c1, ..., cr ∈ R such that π(gt) = π(c1c2...crcr−1...c1), and by using similar arguments as in

(ii) we get s(g).

(iv) gtt �∈ W . This case is analogous to (iii).

Now we need to prove that s(g) is unique. But this is a consequence of Corollary 4.11.

5 Main theorem

Definition 5.1. In notation of Theorem 4.12 we put for any g ∈ B \ {1} :

s(g) = g1g2...gmgm−1...g1.

Now, define a multiplication ◦ on the set B(X) by:

(i) x ◦ 1 = 1 ◦ x = x,

(ii) x ◦ y = π(xy1y2...ymym−1...y1), where s(y) = y1y2...ymym−1...y1.

Notice that the identities x ◦ x = 1 and (x ◦ y) ◦ y = x can be easily obtained from the

definition above.
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Theorem 5.2. The set B = B(X) with multiplication ◦ defined above is a free Bol loop

of exponent 2 with free set of generators X.

Proof. It is clear that X generates B and if B is a Bol loop, then the construction of R(X)

and Theorem 4.12 give us a natural way to extend a mapping between X and another Bol

loop L of exponent two to a homomorphism from B into L. So we only have to prove that

B is a Bol loop. It is possible to prove this directly, but in this case we have to consider

many particular cases. We choose the other way based on the connection of Bol loops

with twisted subgroups described in the Preliminaries.

Let G =
∏

y∈R(X) � < Ry|R2
y = Id > be a free 2-group. The group G acts on B : bRy = b◦y

and bId = b. Then the set H = {g ∈ G|1g = 1} is a subgroup of G, where 1 is the empty

word of B(X).

Now, let B′ = {Id}∪{Ry | y ∈ R(X)}G. Note that RyRzRy ∈ B′, for all y, z ∈ R(X), and

then B′ is a twisted subgroup of G.

Lemma 5.3. G = HB′

Proof of Lemma 5.3. Let g =
∏m

i=1 Rgi ∈ G and y = g1g2...gm. Then 1g = π(y). If

π(y) = 1, then g ∈ H.

Suppose that π(y) �= 1 and consider s(π(y)) = y1y2...ykyk−1...y1, where yi ∈ R(X). Note

that S(g) = Ry1Ry2 ...RykRyk−1
...Ry1 ∈ B′. We have that 1S(g) = π(s(π(y))) = π(y), and

so π(y)S(g) = 1. Hence gS(g) ∈ H and g = (gS(g))S(g) ∈ HB′.

Lemma 5.3 is proved.

Lemma 5.4. H ∩ (B′B′) = {Id}.

Proof of Lemma 5.4. Let b = Rb1Rb2 ...RbmRbm−1 ...Rb1 ∈ B′ and c ∈ B′ be such that

bc ∈ H. By Lemma 4.1, it follows that π(b1...bm...b1) �= 1, and then c �= Id. Consider

c = Rc1Rc2 ...RckRck−1
...Rc1 . Hence

(...(b1 ◦ b2)...) ◦ bm) ◦ bm−1)... ◦ b1) ◦ c1)...) ◦ ck)...) ◦ c1 = 1. (5)

Since (x ◦ y) ◦ y = x, we get (...(b1 ◦ b2)...) ◦ bm) ◦ bm−1)... ◦ b1) = (...(c1 ◦ c2)...) ◦ ck)...) ◦ c1.
Then π(b1b2...bmbm−1...b1) = π(c1c2...ck...c1). By Corollary 4.11, we get that m = k and

ci = bi, for all i.

Lemma 5.4 is proved.

As a consequence of the Lemmas above and Proposition 2.1, we have the following result.

Proposition 5.5. (G,H,B′) is a Baer triple. Furthermore, B′ with the operation ∗
defined by b ∗ b′ = c, where bb′ = hc, for some h ∈ H, is a Bol loop of exponent two.

Now, let us conclude the proof of Theorem 5.2. We just need to prove that (B, ◦) ∼= (B′, ∗).
Define ϕ : B′ → B by

ϕ(Ry1Ry2 ...RymRym−1 ...Ry1) = π(y1y2...ymym−1...y1) and ϕ(Id) = 1.

By Lemma 4.1 and Theorem 4.12, we get that ϕ is a bijection.

Let b = Ry1Ry2 ...RymRym−1 ...Ry1 ∈ B′ and c = Rz1Rz2 ...RznRzn−1 ...Rz1 ∈ B′. Consider

y = y1y2...ymym−1...y1, z = z1z2...znzn−1...z1 and u = yz1...zn...z1. Note that ϕ(b)◦ϕ(c) =
π(y) ◦ π(z) = π(u).
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If π(u) = 1, then π(y) = π(z). By Corollary 4.11, we have y = z. Thus b = c and

ϕ(b ∗ c) = ϕ(Id) = 1 = ϕ(b) ◦ ϕ(c).
If π(u) �= 1, consider s(π(u)) = u1u2...urur−1...u1 and g = Ru1Ru2 ...RurRur−1 ...Ru1 . By

the proof of Lemma 5.3, we have that b∗c = g. Hence ϕ(b∗c) = ϕ(g) = π(u) = ϕ(b)◦ϕ(c).
Therefore ϕ is an isomorphism and we have that (B, ◦) is a Bol loop of exponent two.

Proposition 5.6. H is a core-free subgroup of G.

Proof. Let N ≤ H be such that N is normal in G. Suppose that N �= {Id}. Then there

exists φ = Ry1Ry2 ...Ryn ∈ N , with n > 1, yi ∈ R(X) and yi �= yi+1, for all i.

Since 1φ = 1, it follows that π(y1y2...yn) = 1. Then

π(yn...y2y1y2) = y2. (6)

Since N � G and N ≤ H, we have Ry2φRy2 ∈ H, and then 1Ry2φRy2 = 1. Thus

1Ry2φ = 1Ry2 , and hence y2φ = y2. By (6), we get π(yn...y2y1y2)φ = y2, and then

y2 = π(yn...y2y1y2y1y2...yn), which is a contradiction with Proposition 4.4.

Now we will determine the nuclei and the center of B(X). Firstly, we need the following

lemma.

Lemma 5.7. Let x, z ∈ B(X) \ {1}. Then z = x ◦ (x ◦ z) if and only if x = z.

Proof. Suppose that x �= z and z = x ◦ (x ◦ z). Consider s(z) = z1z2...znzn−1...z1 and

s(x ◦ z) = u1u2...umum−1...u1. Then

π(u1...um...u1) = x ◦ z = π(xz1...zn...z1), (7)

π(xu1...um...u1) = x ◦ (x ◦ z) = z = π(z1...zn...z1) (8)

By (7) and (8), we get π(u1...um...u1) = π(z1...zn...z1u1...um...u1z1...zn...z1). Then m = n

and ui = zi, for all i, by Corollary 4.11. Therefore x = 1, a contradiction.

As a consequence of Lemma 5.7, we have that (x ◦ (x ◦ z)) ◦ z �= 1 = x ◦ ((x ◦ z) ◦ z),

for every x, z ∈ B(X) \ {1} such that x �= z. It follows that Nλ(B), Nμ(B) and Nρ(B)

contain only the identity element 1. Therefore we established the following result.

Corollary 5.8. The nuclei and the center of B(X) are trivial.

6 Open problems

We finish this paper with two conjectures.

If |X| > 1, it is easy to construct proper subloops of B(X) that are free Bol loops of

exponent 2. In the case of free loops (infinite exponent), it is well known that all subloops

of these loops are free [4, Corollary 1, pg. 16].

Conjecture 6.1. Every subloop of a free Bol loop of exponent two is free.
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Let Y = {y1, y2, ..., yn} be a free set of generators of B(X). For i ∈ {1, 2, ..., n} and

v ∈ 〈Y \ {yi}〉, define e(i,v), f(i,v) : B(X) → B(X) by

e(i,v)(yi) = yiv, f(i,v)(yi) = vyi and e(i,v)(yj) = f(i,v)(yj) = yj,

for every j ∈ {1, 2, ..., n} \ {i}. The mappings e(i,v) and f(i,v) are automorphisms of B(X)

and they are called elementary automorphisms of B(X). An automorphism of B(X)

is called tame if it belongs to the group generated by all elementary automorphisms of

B(X). A question concerning free objects in varieties of loops is whether all of their

automorphisms are tame. For free Steiner loops the answer to this question is positive [6,

Theorem 7].

Conjecture 6.2. Every automorphism of a free Bol loop of exponent two is tame.
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(A. Grishkov) Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua do

matão 1010, São Paulo - SP, 05508-090, Brazil and Omsk State a.m. F.M.Dostoevsky

University, Russia.

E-mail adress : grishkov@ime.usp.br

(M. Rasskazova) Omsk State Technic University, Omsk, Russia

E-mail adress : marinarasskazova@yandex.ru
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