Journal Pre-proof

Free Bol loops of exponent two

JOURNAL OF

A. Grishkov, M. Rasskazova, G. Souza Dos Anjos

PIL: S50021-8693(23)00078-9
DOI: https://doi.org/10.1016/j.jalgebra.2023.02.019
Reference: YJABR 18935

To appear in: Journal of Algebra

Received date: 9 June 2022

Please cite this article as: A. Grishkov et al., Free Bol loops of exponent two, J. Algebra (2023),
doi: https://doi.org/10.1016/j.jalgebra.2023.02.019.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and
metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional
copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early
visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content,
and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier.


https://doi.org/10.1016/j.jalgebra.2023.02.019
https://doi.org/10.1016/j.jalgebra.2023.02.019

FREE BOL LOOPS OF EXPONENT TWO

A. GRISHKOV, M. RASSKAZOVA, AND G. SOUZA DOS ANJOS*

Abstract

A Bol loop is a loop that satisfies the identity z((yz)y) = ((zy)z)y. In this paper,
we give a construction of the free Bol loops of exponent two. We define a canonical
form of all their elements and describe their multiplication law based on this form.

Keywords: Bol loop, free loop.

1 Introduction

A loop consists of a nonempty set L with a binary operation * such that, for each a,b € L,
the equations a * x = b and y * a = b have unique solutions for z,y € L, and there exists
an identity element 1 € L satisfying 1 xx = x =z * 1, for any x € L. A (right) Bol loop
is a loop that satisfies the (right) Bol identity

z((y2)y) = ((zy)z)y. (1)

One of the most interesting subvarieties of Bol loops is the variety By of Bol loops of
exponent two. Every loop in B, is a Bruck loop, i.e., a Bol loop with the automorphic

= z71y~! for every z,y in the loop). Many constructions of non-

inverse property ((zy)~
associative loops of By can be found in the literature (see [7, [§] for example), the minimal
such loop has order 8. Some of the most important problems involving loops of By are
those related to solvability and existence of simple loops (see [1} 3, 9, [10]). In [10], a class
of non-associative simple Bol loops of exponent 2 was constructed. The smallest loop in
this class, which is also the smallest non-associative simple loop in By ([3, Theorem 3]),
has order 96.

In this paper, we give a construction of free objects in the variety By. Let B(X) be
the free Bol loop of exponent two with free set of generators X. We construct a subset
R(X) of B(X) such that every element b € B(X) \ {1} has the canonical form b =
(...(b162)b3... )by )by —1)...)b2) by, where b; € R(X) and b; # b;yq, for all 4, and then we
describe the multiplication law of B(X) based on this form. Furthermore, we prove that
the nuclei and the center of B(X) are trivial.

*This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior
- Brasil (CAPES) - Finance Code 001



2 Preliminaries

Let L be a loop and =z € L. The bijections L,, R, : L — L defined by (y)L, = xy and
(y)R, = yx are called the left and right translations of x in L, respectively. The right
multiplication group of L is the group Mt (L) = (R, | x € L) and the right inner mapping
group of L is Inn,(L) = {¢ € MIit.(L)|(1)¢ = 1}. The subgroup Inn,(L) of MIt.(L)
is core-free, i.e., the only subgroup of Inn,(L) that is normal in MIt,.(L) is the trivial
subgroup {1}, where I; is the identity mapping of L.

The left, middle and right nuclei of L, denoted respectively by Ny(L), N, (L) and N,(L),
are defined by:

Nx(L) ={a € L| a(zy) = (ax)y V x,y € L},
Nu(L) ={a € L| z(ay) = (za)y ¥V z,y € L},
Ny(L)={a € L| z(ya) = (zy)a V z,y € L}.

The nucleus of L is defined by N(L) = Nx(L)NN,(L) N N,(L) and the center of L is the
set Z(L) ={a € N(L)| axr = za ¥V x € L}. The nuclei of L are subgroups of L and the
center of L is an abelian subgroup of L.

Bol loops are loops that satisfy the identity (Il). This class of loops contains Moufang
loops and groups. Furthermore, Bol loops are power-associative and right alternative, and
have the right inverse property. Other basic facts from loop theory and Bol loops can be
found in [4, [11].

The Baer correspondence ([2]) is an important tool in the study of Bol loops (cf. [I]).
From it, we obtain that Bol loops are related to twisted subgroups, as we can see in the
next proposition. A subset K of a group G is called a twisted subgroup of G if 1 € K and
L oyr € K, forall 2,y € K.

Proposition 2.1. ([3, Proposition 5.2]) Let (G, H, B) be a Baer triple, i.e., G is a group,
H is a subgroup of G and B s a right transversal of H in G. If B is a twisted subgroup
of G, then B with the operation x defined by

bxb = c, where bt = hc, for some h € H, (2)

is a Bol loop. Conversely, if (B, *) is a Bol loop and H is core-free, then B is a twisted
subgroup of G.

If L is a loop, the triple (G, H, B), where G = MIt.(L), H = Inn,(L) and B ={R, |z €
L}, is a Baer triple. In this condition, L is a Bol loop if and only if B is a twisted subgroup
of G [1l, 6.1].

Let B be a Bol loop of exponent n and X be a subset of B. We say that X is a free set
of generators of B if X genetares B and every mapping between X and a Bol loop B’ of
exponent n can be extended to a homomorphism between B and B’. We say that B is a
free Bol loop of exponent n if it has a free set of generators.

Now consider B as a free Bol loop of exponent two. A subset T' C B is a prebasis of B
if for every b € B there exist by, ..., b, € T such that b = byby...b,b,_1...bob;. Here and in
the following, we will write v = vivs....v, if v = (...((v1v2)v3)...)V,. A subset T C B is



an independent if for every ay, ..., am, b1, ..., b, € T, such that b; # b; and a, # a,, for all
1,7, D, q, from aias...a;y,am_1...a2a1 = b1by...b,b,_1...bob1, we have that n = m and a; = b;,
i=1,...,n. A subset T'C B is a basis of B if T is an independent prebasis of B.

A group G is a free 2-group if it is a free product of cyclic groups of order two, i.e., it has
the form G = [[,cp* < z|z? =1 >.

3 Construction of a basis of free Bol loops of expo-

nent two

Let X be a finite ordered set of letters and P = P(X) be the set of all non-associative
words on X. We denote the empty word by 1. For v € P, by Sub(v) we denote the set of
all subwords of v. Note that if v = vjvq, then Sub(v) = {v} U Sub(v;) U Sub(vs).

For v € P, the lenght of v, denoted by |v], is the number of letters in the word v. Note
that 1] = 0.

Let C(X) = {uu, (w)v|u,v € P} and W = W(X) = {v € P|Sub(v) N C(X) = 0}.
Define the mapping 7 : P — W, where, for v € P, m(v) is given by induction on |v| using
the following rules:

(i) m(x) =z, if z € X,

(ii) If u,v € W, then

1, ifu=uv,
m(uv) = a, if u=av,
uv, if uwv e W,

(i) fu g W or v & W, then 7(uv) = m(m(u)m(v)).
Notice that in the case (iii) we get |m(u)m(v)| < |uv|. Hence this definition is correct.

Lemma 3.1. Let u,v,w,vy,...,v, € P and a € W. Then:
(a) m(uv) = w(mw(u)m(v)).

(b) m(uv.w) = 7(u.vv) = m(w).

(c) m(u) = w(v) if and only if m(uw) = 7(vw).

(d) If m(uvivs...v,) = w(v), then w(u) = m(vo,...v901).

(e) If m(v1vg...0,) = @, then m(av,...vovy) = 1.

(f) If m(uv) = 7(uw), then w(v) = 7w(w).

Proof. The item (a) follows from the definition of 7. The item (c) is a consequence of (a)

and (b), and the items (d) and (e) are consequences of (b) and (c). Let us prove (b) and

(f).

(b) By (a), we have 7(uv.v) = w(m(m(u)7(v))m(v)) and 7(uw.vv) = 7(u). If 7(u)7w(v) € W,

then (7 (7w (u)w(v))7(v)) = 7((7(u)7w(v))w(v)) = 7(u). Iff 7(u) = em(v), then w (7w (7 (u)7(v))7w(v)) =
m(em(v)) = m(u).

(f) By (a), we only have to prove the case where u,v,w € W. If either 1 € {u,v} or

u = v, the result is trivial. Suppose that u,v € W\ {1} and u # v. If u = cv, for some

¢ # 1, then 7(uw) = ¢. Since |¢| < |u|, we have uw ¢ W. Thus u = dw, for some d # 1,

and we have cv = u = dw. Therefore w = v.



Now suppose that uv € W. Since |uv| > |ul, it follows that uw € W. Hence uw = uv
and we have w = v. O

Lemma 3.2. Let v = v1v9vs3...0,,, where v; € W and v; # viyq, fort=1,...m — 1. If
|m(v)| < |v|, then there are three possibilities:

(a) vivy € W and v; = v1v905...0;_1, for some i > 2,

(b) There exists vy € W such that vy = vjvjv;_;...v302, where 1 < j < m and vivj, € W,
(¢) v1 = VU Um_1...02, for some v € W.

Proof. If vijvy € W, then there exists i € {3,...,m} such that vyvs..v;,_; € W and
VU0 1v; & W. Since v; # wviiq, we have v; = viv9vs...v;_1. When vivg € W we
have that v; = aws, for some a« € W. If vy # Bv,v_1...09, for every 5 € W, then there
exist v € W and j € {2,3,...,m — 1} such that v; = vjv;v;_1...u3v2 and v} # yv,41, for
every v € W. Hence vjv;1; € W. O

Remark. In the Lemma [3.2]it is possible that v] = 1.

The following result is a consequence of Lemma 3.2

Corollary 3.3. Let v = v v9v3...0,,, where v; € W and v; # vy, fori=1,...,m — 1.
There are four possibilities:

(a) 7(v) = 1,

(b) m(v) = VV1.. Uy, where T(V10..0—1) =1 and 1 <1 < m,

(c) m(v) = Vvj1Vj42..Um, where T(v1vs..0—1) = 1,u = vjv;v,_1..041, V] # 1 and
1<l<j<m,

(d) m(v) = v), where m(viva..v1—1) = 1,0 = VjURUm—1..0141, U} # 1 and 1 <1 < m.

Consider X = {z1,x9,...,x,.}. We define an order > in W inductively by the following
rules:

(i) & > xj, if i > j,

(ii) w > v, if |u] > |v],

(iii) If |u| = |v|, w = wyus, v = vyv9, then u > v in the following cases:
(iii.1) ug > v,

(iii.2) us = v9 and uy > vy.

Definition 3.4. For any y € P there exists unique canonical decomposition y = y19s...Ym—1Y.,
such that |y;| = 1. We denote ' = ¢/ ypm_1...y1. If ¥/, = ypyp_1...Ym with |yx| = 1, then
W) =y" = y1y2-- Y- yx and Y = Yryp_1.. Y1 = Y.

Definition 3.5. In notation above, define the following:
(1) llyl] = m,

(ii) y* = {z € Pla™ =y, or 2" = y"}.
(111) y(z) = ykykfl---yi(ylyQ'--yifl)yi = 3, ceey k,
( y()

iv) ¥ = y1yo i1 (Yryp1.- i), i =2, ..k — 1,

(]

Example 3.6. Let X = {a,b,c} and y = (a(bc))((ca)b). Then the canonical decom-
position of y is y = yiy2y4, where y; = a, yo = be, y5 = (ca)b = ysysys, and hence



ly|l = 3 and ||y'|| = [ly"|| = 5. Furthermore, y* = (((ca)b)(bc))a, y™ = (((a(bec))b)a)c,
Y = Ysyays(Uiye), Yy = Ysya(iveys)s v = Ys(yeysya), ¥y = yl(ysy4y3y2) y®) =
(1192) (ysyays), and ¥y = (y192y3) (ysya). Note that y = y®) and

v = {v" v vy vy ve), @, @y W

Define the set of symmetric words of P by S(X) = {v1y2---Ym¥Ym+1Ym---y1 | i € P,m > 0}.

Lemma 3.7. In notation above, we have:

(@) v = " = o 4y 5 @i = 2k — 1} and [{g" @) = 2,k — 1}] =
|{yt,y(i)|z' = 3, ,k‘}‘ =k—1. '

(b) [f yt = ytta then y* = {ytt7y(1) = y(k—i+2)>i = 27 ) k— 1} and ‘y*‘ =k—1

(c) If yt # y', then |y*| = 2(k — 1) and y* N S(X) = 0.

(d) If y*, y"* € W, then y* C W.

(e) min{y!, 4"} = min{z|z € y°}.

Proof. (a) It is immediate that {y',y", y11), ¥y, = 2,...,k — 1} C y* and |{y",y?|i =
b= 11 = sy li = 3. K} =k 1.

Let z € y*. We have that 2 = 2125...2,, where 2 = z129...2], 2] = 2.2,_1...z; and

|z1| = |2,] = 1. Since |z1| = |z.| = 1 and 2" € {y', "'}, we have k = r. If 2" = y' then

2 = y;, for all i, and so z € {y*,yD|i = 2,....,k — 1}. If 2 = 4, then z,1_; = y;, for all

i, and so z € {y',y()|i = 3, ..., k}. Therefore y* = {y',y", yis1),y?,i = 2,....k — 1}.

(b) If y* = ", then y¥ = y_it2), for all i € {2,...,k — 1}. Thus the claim follows from

(a).

(c) Hyu = yU), for some i and j, then a simple calculation shows that j = k —i + 2 and

Y1 = Yra1-1, for all [, and so y* = y**. Hence |y*| = 2(k—1) by (a). By a similar argument,

we can get that y¥, yiy1) & S(X), for all i.

(d) Let yt = Y1Y2--Yi1 (YrYr—1---¥i) € y*. Since y, ytt € W, we have y1ya...Yi—1, Yr¥Yr—1---Yi €

W, yio1 # yi and yio1 # YeYre—1---¥i- Then yiys..yio1 # a(YrYr—1.-.¥:), for all o € P.

Hence ) € W. By similar arguments, we can Conclude that y; € W for all j. There-

fore, y* C W.

(e) It is clear that y* = min{y",y?P|i = 2,....,k — 1} and y* = min{y",yu|i = 3,...,k}.

Thus the claim follows from (a).

Remark. We can define an equivalence relation ~ on P(X) by x ~ y if and only if
r* Ny* # (. The equivalence classes of this relation can be of three types: Oy, Oy and
O3, where:

(i) O1 € W(X)\ S(X),

(i) Oy C W(X) and y* =y € S(X), for y € Oy,

(iii) O3 ¢ W(X).

Definition 3.8. For y € W, let yo = min{y’,y"}. Define the set D = D(X) =
{voly, o, y6 € W,y # vo}-

Example 3.9. If X = {a,b} with b > a and W,, = {y € W||y| = n}, then
DN Ws = {a,b,ba, ((ba)b)a, (b(ab))a, (b(ba))a, ((ba)(ab))a, ((a(ba))b)a, ((b(ab))a)b,
((b(ba))b)a, (b(a(ab)))a, (b(a(ba)))a, (b(b(ab)))a, (b(b(ba)))a, (b((ab)a))a, (b((ba)b))a}.



Definition 3.10. Define the following sets:

(i) Ry = X ={z1, 29, ..., 2.},

(ii) R, = R,_1U{y € D(X) | |ly| <n,y =uius...uy,u; € Rpy_1,i=1,....m}, for n > 1,
(iii) R(X) = | Rn.

neN

Notice that X € R(X) C W and R(X)NS(X) =0.

Corollary 3.11. Let b = byby...b, € W, be such that by € X. Ifb € R(X), then

b<b,b*CW,b, € X and b; € R(X), fori=1,...,n. (3)

Example 3.12. If X = {a, b} with b > a, then:
Rs = {a, b, ba, ((ba)b)a, (b(ba))a, ((a(ba))b)a, ((b(ba))b)a}.
Note that (b((ba)b))a, (b((ab)a))a € (D NW;) \ Rs, since (ba)b, (ab)a € S(X).

Definition 3.13. B(X) = {1} U{y € W(X)|y = v1¥2---Yn, ¥i € R(X)}.

Remark. Let y = y1ys2...y, € P be such that y; € R(X), for all i. By LemmaB.2 y € W
if and only if y1ys...y;-1 # yi # Yir1, for i € {1,...,n — 1}.

4 Proof that R(X) is a basis of B(X).

For proof that R(X) is a basis of B(X) we need the detailed information about 7 (b) if
b=by..bg...by, b; # bir1 and b; € R(X). We begin with the following simple fact.

Lemma 4.1. Let by, by, ...by € P. Then mw(bybs...bybg_1...b1) = 1 if and only if w(by) = 1.

Proof. We have 7(by...bg...by) = w(m(by)...w(bg)...w(b1)). If w(by) = 1, then it is clear that
7(by...bg...by) = 1.

Now suppose that 7(by...by...by) = 1. Omitting all b;, b;41 such that 7(b;) = m(bj11), we
get that 7(m(by)...w(bg)...w(b1)) = w(aras...ara,_1...a1), where r < k, a, = w(by), a; # a1
and a; € W\ {1}, for all i <.

We will prove that a,, = 1 by induction on r. Consider r > 1 and define a,,; = a,_;, for all
i. Let [ be the minimal such that 7(ajas...q;) = 1. If | < 2r — 1, then 7(ayay_q...a1) = 1,
where ! = 2r — 1 — [, and so w(ajay...ay) = 1 by Lemma B Thus we only have to
consider three cases:

(i) { <r. Then m(aj41...Gy...a;41) = 1, and hence a, = 1 by the induction hypothesis.

(ii) I = r. Then 7(ayas...a,) = w(a1as...a,_1) = 1, and we get a, = 1.

(iii) I = 2r — 1. By Lemma B.2] if a, # 1, then either a; = ajas...a,a,_1...a3 or a; =
Vass—1...09, for some v # 1 and s > 0 such that 2(s — 1) = 2r — 3, but both cases are
impossible. Hence a, = 1. O

Lemma 4.2. Let n > 1 and c,wy,wy,...,w, € W\ {1} be such that cw; € W, w; €
Sub(c) U Sub(wy) and w;_1 # w;, for all i. Then cwiws...w, € W.



Proof. For 1 < m < n, suppose that cuyws...w,, € W. Since w,,1 € Sub(c)USub(w,), we
have that w11 # cwiws...w,,. Since w,, # Wp,11, there is no f such that cwyws...w,, =
Bwp1. Hence cunws.. w1 € W. O

Lemma 4.3. Let k > 1 and w = wjwsy.. wpwy—_1..w; € S be such that w; € W\ {1},
wiwg € W oand w; # wiyq for all i. There are two possibilities:

(a) T(w) = w or

(b) There exists | such that 3 <1 <k and w; = wyws...w;_1.

Proof. If k = 2, then wywyw;, € W since wywy # awy, for all « € W. Hence 7(w) = w.

Suppose that £ > 3 and 7(w) # w, and define wyy; = wy_;, for all i. By Lemma (a),
there exists [ such that 2 < [ < 2k — 1 and w; = wyws...w;—1. Since w; is not a proper
subword of itself, we must have [ < k. |

Proposition 4.4. Let b = byby...bybx_1...b; € S be such that by € W\ {1}, b; € R and
bi_1 # b; for alli > 1. Then w(b) = Aby, where X = 1 implies that k =1 or by & R.
Moreover, if by € R, then w(b) € R if and only if k = 1.

Proof. 1If k € {1,2} it is easy to see that the claim holds. Suppose that the claim holds
for all &' < k, where k > 3. First we will prove the following lemmas.

Lemma 4.5. Suppose that b, = b1by...b,,_1, where3 < m < k. Thenm(b) = €by,_1...boby &
R.

Proof. We have three cases:
(1) m = k. Thus bk = blbg...bk_l, and hence W(b) = W(bk_l...bgbl). Since bk_l...bgbl S bz, it
follows that 7(b) = bg_1...bob;. Since by, € R and RNS = (), we have 7(b) = by_1...baby & R.

(ii)) m = k — 1. Thus by_1 = biby...by_o and 7w(b) = mw(bybx_1...b1). Since |by_1| > 1
and b, € R, we have byby_1 € W by @B). By Lemma 2] biby_1...0; € W, and then
7(b) = byby_1...by. Since bybs...by_1 & W, it follows that biby...by € 7(b)* \ W, and hence
m(b) ¢ R by B).

(iii) m < k — 1. Thus 7(b) = m(bpmi1.--bkbg_1...bm11...boby). By the induction hypothesis,
T (byy1--bkbg—1---bymy1) = Abpy1, where X # 1 because m + 1 < k and b,,.; € R. Then
7(0) = 7 (Bos 1o Db 1obmsrbsbt) = T(Abysr.bobi). If by = Abps1, then m(b) =
T(byp—1...bab1). Since by,—1...boby € b}, it follows that w(b) = by,,—1...beby. Furthermore,
since b, € R and b,,,_1...baby # by, we have 7(b) = by,—1...baby & R.

When Ab,,1b,, € W we have that Ab,,;1b,,...00b; € W by Lemma Then 7(b) =
Abi1...baby. Since byibs...b,, & W, we have bybs...b,, 1A € 7(b)* \ W, and hence 7(b) € R
by @)).

Therefore, we proved Lemma .51

0

Define bk+i = bk—i7 for all 7. Note that b = bgk_lbgk_g...bl = blbg...bgk_l.



Lemma 4.6. Suppose that for n € {2,3,...,k}, by € R and we have one of the following
situations:

(al) b, =, biby...b,,_1, where V), # 1, or

(a2) b, = by...b,_1.

Then 7(bog_1bok—2...bny1) # 1.

Proof. Suppose by contradiction that 7(bog_1box_2...b,+1) = 1. We have two cases:

(i)n < k. Let v = bybs...b,. Then w(vb,41...bg...by11) = 1, and so w(v) = 7(bps1..-bg...bys1)
by Lemma Bl By the induction hypothesis, we get that 7(v) = Ab, 41, where A = 1 if
and only if n+1 = k. Applying Corollary B.3/to the word v = b1bs...b,,, we have two cases
7(v) = ab, (in the cases (b) and (c)) or w(v) = ), w(by...by—1) = 1, by = bjbyby_1...b111
(case (d)). We note that the case (a) is impossible since 7(v) # 1.

Let m(v) = ab,. If a« =1, then \b,,; € R. Since b; € R, we get that n + 1 = k by the
induction hypothesis, and hence b,, = 7(v) = b,41, which is a contradiction. Suppose that
a # 1. Since b, # by, it follows that A = 1, and then |b,| = 1 by (]), which contradicts
(al) and (a2).

Let m(v) = b) and [ = 1. Then by = Abp41b,b,—1...b2. In (al) this does not occur since
by € Sub(b,). Now consider the case (a2). Since 7(bgbs...b,) = 1 in this case, we get that
bl € by \ W, and then b; ¢ R by (3)), a contradiction.

If 7(v) =0; and 1 <1 < n, m(biby...b—1) = 1 and b, = bjb,b,—1...0;41. Then we have a
contradiction since b, € Sub(b,) in both cases (al) and (a2).

(ii) n = k. By assumption, we have that 7(byby...bx_1) = 1, and then 7(bg_1...bab;) = 1 by
Lemma Bl First, consider the case (al). Since by = b.b1bs...bx_1 and w(bx_1...baby) = 1,
it follows that b}, € by \ W, and then by ¢ R by (), a contradiction.

Now consider the case (a2). Since by = bs...bx_1, then |by_1| = 1 by @), and so by_1bx_2 €
W. Since 7(bg_1...bab1) = 1, it follows that there exists [ such that b, = bg_1bg_2...b141
by Lemma B2l If [ > 1, then m(bx_1bx_2...bi11b;) = 1, and so b, € b; \ W, which is a
contradiction. If [ = 1, then b; = b, which is a contradiction since by, by € R.

Therefore, Lemma is proved. O

Now we can finish the proof of Proposition .4l First, let us prove that w(b) = Aby, for
some A € W, where A # 1 if by € R. By Lemma (.1l we have that w(b) # 1, and then
there are three possibilities according to Corollary 3.3k

(i) w(b) = bl by,...by, where b, = U, by i1bpmao.by1, 1 <m <n < 2k—1and b, # 1 if
m = 1. Thus we have the desired result.

(11) W(b) = b/n, where b,, = b;.bblbg...bn_l, 1l<n<2k-— 1, b;l 7é 1 and W(bgk_lbzk_g...bn_,_l) =
1. Since b, can not be a proper subword of itself, we get n < k. Furthermore, we get that
b1 € R by [3). Then we have a contradiction with Lemma (4.6l

(111) W(b) = bnbn—l---bly where W(bgk_lbgk_g...bm+1) = 1, bm = bn+1bn+2-~bm—1 and 1 S n <
m<2k—1.Ifn>1orn=1and b ¢ R, then we have the desired result. Suppose that



7(b) = by € R. We have two cases:

(iii.1) |b2] > 1. By (B), by can not be of the form b)by, and then b1b, € W. By Lemmas
and .5 we get that m(b) € R, which is a contradiction.

(iii.2) |bo| = 1. Note that b,, = bebs...b,,_1. Since b,, can not be a proper subword of itself
and bobs...bg...bo ¢ R, it follows that m < k. Then 7(bog_1bok_2...byy1) # 1 by Lemma
[4.6], which is a contradiction.

Now we only have to prove that 7(b) ¢ R when b; € R. Consider that b; € R and
7(b) = Aby, where A # 1. If |by| > 1, then 7(b) € R by [@). If |by] = 1, then biby € W,
and as in (iii.1) we get that 7(b) € R. O

Corollary 4.7. Let b = biby...bgbi_1..b1 € S and g = g192...9nGn-1---g1 € S be such that
bi,g; € R, bi_1 # b; and g1 # g;, for alli and j. If m(b) = 7(g), then by = g1.

As a consequence of Proposition 4.4l and Lemma we have the following result:

Corollary 4.8. Let b = vbibs...bibx_1...01v € S be such thatv € W\{1}, vby € W, b; € R
and b;_1 # b; for all i > 1. There are two possibilities:

(a) 7(b) = b,

(b) There exists m such that 2 < m < k and w(b) = €b,,_1...b1v, where e € W.

Lemma 4.9. Let b = vbyv € S and g = vg192...9nGn-1---g10 € S be such that v € W\ {1},
v# b, v# g, bi,g; € R, and gj1 # g5, for all j. If m(b) = 7(g), then b= g.

Proof. 1f n = 1, then 7(vb;) = 7(vg;). By Lemma Bl (f), by = g1, and hence b = g. Now
suppose that n > 1 and the claim holds for every n’ < n. We will prove this result in two
steps:

(i) First we will prove that there exists o € W\ {1} such that abja € W,
m(abi1g192---Gngn-1---g1b1) = abyar and either ab; # g; or a« = v. We have two cases:
(i.1) v = aby, with o # 1. Then 7(vbv) = 7(awv) = 7(vg192-.-Gngn_1..-1v), and hence by
Lemma B.1] (c):

(@) = T(Vg1G2--GnGn-1---G1)- (4)
Using Lemma Bl (¢) and v = aby in ), we get m(abia) = w(abigy...gn...q1010).

(i.2) vbyv € W. By 7(vg192-.-9nGn—1...g1v) = m(vbiv) = vbyv and Lemma B.1] (e), we get
m(vb19192...9nGn—1-..g1v) = 1. Thus

T(vb1g1..-Gn---g1010) = T(VD1G1...Gn-.grOVD1V) = T(W (VD11 ... Gn-.. 1 V)T (V1Y) = VD1V
and we put a = v.
(ii) Now consider a € W\ {1} as in (i). If by = g1, then
m(abig1ge...gn...g101) = T(Aga...gn...g20) = abiav.
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If a # go, then by induction by = ¢s...p...go. Since by € R and RN S = (), then n = 2
and b; = go, which is a contradiction with b; = g1 # go. In the case a = g and n > 2, we
get m(gs..-gn...g3) = abja = gab1ge. By Corollary 4.7 we have g3 = g2, a contradiction.
Finally, if @ = go and n = 2, we have m(g2) = gab1g2. Since g2 € R, hence by = g9, which
is a contradiction with by = g;.

Suppose b; # g1. By the choice of «, either abig; € W or g; = ab;. We have two cases:
(ii.1) g1 = ab;. Then abja = w(abig1..-gngn-1.--g1b1a) = 7(g2...gngn-1---g1b1c¢). Hence
by Lemma B.1] (¢) we get 7(gs...9ngn-1---91) = @ and ag; = abja € W. Using the same
lemma again, we get m(ga...9ngn-1.--g2) = agi. If n = 2, then g = gy € R, and hence
g1 € X, which is a contradiction with g; = ab;. Then n > 2. By Proposition [£.4] there
exists A # 1 such that ag; = Ago, and then ¢g; = ¢o, a contradiction.

(ii.2) abygy € W. Note that abja # abigi...gn...g1bic. Then there exists m such that
1<m<nand g, =abigr...9nn—1 by Lemma We have three more cases:
(ii.2.1) m = n. Then abja = 7(gp_1...g1b1x). Since g,_1...g101 € g* and g, € R, it
follows that abya = g,,_1...g1b1cr, which is a contradiction because g N S(X) # 0.
(ii.2.2) m = n — 1. Then abja = w(abig;...gn-..g101) = 7(gngn-1...g1b1¢). Since |g,_1| >
1 and g, € R, we have ¢,9,_1 € W. By Lemma 42 ¢,9, 1...9101c € W. Thus abja =
nGn—1---g1b1, and hence o = ¢,,g,—1...g1, which is a contradiction because a € Sub(g,,_1).
(i1.2.3) m < n — 1. Then abja = 7(gms1---Gn-.-g1b1c¢). By Proposition 4] there exists
A # 1 such that abja = T(Agmi1Gm---gib1) and Agy1 € W. If g,y = Agpny1, similarly to
(ii.2.1) we get a contradiction. If A\g,, 119, € W, similarly to (ii.2.2) we get a contradiction.
O]

Lemma 4.10. Let b = vbibs...bgby_1..byv € S and g = vg192...GnGn_1...g1v € S be such
that v € W\ {1}, v # by, v # g1, bi,g; € R, bi_1 # b; and g;—1 # g;, for all i and j. If
7(b) = 7m(g), then b= g.

Proof. We will prove this result by induction on k. We can consider n > k > 1. First we
will prove the affirmation 1:

Affirmation 1. If by = g1, then b = g.

Proof of affirmation 1: We have that 7w(vbiby...bxbg_1...b2) = w(vb1ga...9nGn-1..-g2). Then
(7w (vby)ba...bkbg—1...bam(Vby)) = 7(7 (V1) g2-..GnGn-1..-gom(vby)). If by # w(vby), then go #
7(vby) by Proposition .4l and Corollary [1.7], and hence the result follows by the induction
hypothesis.

Suppose that by = 7(vby). If k = 2, then w(bsgs...gngn_1.--g2b2) = by. By Proposition
4.4, we must have by = g and n = 2, and then b = ¢g. Using a similar argument,
we get that & = 3 implies b = g. Now consider £ > 3. Then 7(bs...b;bx_1...b3) =
7(b29293---Gngn—1---9392b2). By by # bz and Corollary .7, we must have by = go and
bs = g3, and hence the desired result follows by the induction hypothesis.

Therefore, affirmation 1 is proved.

By Proposition[d.4], there exist v, 8 € W such that 7(vb;...b...byv) = av and 7(vgy...gn...g10) =
Bv. We have ten cases depending on a and f:
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(i)a=1(or g=1).

(i) aby, Bgr € W and o, B # 1.

(iii) @ = a1by and B = 191, where o # 1 # fy.

(iv) a = by and 8 = ¢;.

(V) a=by, 6#1and Bg; € W.

(vi) @ = a1by and = g1, where oy # 1.

(vil) a # 1, aby € W and 8 = ¢;.

(viii) @ = by and B = [191, where 31 # 1.

(ix) a = a1by and Bg; € W, where oy # 1 # .

(x) aby € W and 8 = p1g1, where a # 1 # 3.

We note that if vb; € W, then w(vb;...bg...b1v) = ebyv by Corollary .8 Analogously,
if vg; € W, then w(vgy...gn...g1v) = ngiv. Hence in the cases (i) and (ii) we have
vby,vg1 € W. Since v € W, then v = v'by = v”gq, for some v/, 0" € W, and so b; = g;.
The same equality b; = g1 we have in the cases (iii) and (iv). Then in those cases the
claim follows by affirmation 1.

Case (v): Since Bg; € W, then vg; € W by Corollary[4.8 Hence v = f'gy, for some " # 1.
We have that 7(vb;...bg...b1v) = byv, hence by Lemma BT (¢) we get m(vb1bsy...bg...by) = 1
and 7(by...bgb_1...bobyv) = 1. Using the same lemma again, we get 7(by...bgbg_1...b) =
7(vby). If vby &€ W, then v = by = ¢y, for some v # 1, and so by = g;. By affirmation 1,
LemmalLI0is proved. Let vb; € W. By Proposition[4.4] we get 7(bs...bx...bs) = Aby = vb;.
If £ > 2, then X\ # 1, and hence b; = by, a contradiction. Then k = 2 and by = vb;. From
7(vg1...gn...q1v) = byv, we have 7(vg;...gn...1) = by and 7(vg;...gn...g161) = 1 by Lemma
Bl (c¢). Hence m(b1g1..-gn...q1v) = 1 and 7(b191...gn...g1) = v. Then 7(b1g1...gn...q101) =
vby = by. If by # g1, then by € R by Proposition 4] which is a contradiction. In the case
by = g1 we have Lemma [£.10] by affirmation 1.

Case (vi): We have that ¢; = a1b; and 7(vg192..-gngn—1.--92) = 1. Then 7(gs...gnGn_1..-92) =
m(vg1). We have two cases:

(vi.1) n = 2. Then go = m(vg1). Since g1v = w(vb;...by...byv), we have that 7(g1b;...bg...b1v) =
1, and then 7(g1b;...bg...b191) = w(vg1) = g2, which is a contradiction with Proposition
44

(vi.2) n > 2. By Proposition [4.4], there exists A # 1 such that Ago = 7w(vgy). Since
g1 # ¢o, if follows that vg; ¢ W. Then there exists v # 1 such that v = ~¢;. Since
m(vb1by...bgby_1...b1v) = g1v, we have that w(g1b1bs...b0xbk_1...b1g1) = 7. By Proposition
4.4 there exists A’ # 1 such that X' g; = ~, which is a contradiction because v = vg; € W.

The cases (vii) and (viii) are analogous to the cases (v) and (vi), respectively.

Case (ix): We have that m(vbibs...bibg_1...boa1) = 1. Then mw(aybs...bgbg_1...bab1) = v.
Since m(vg192...Gngn—1..-g1v) = aibyv, it follows that m(a1b1g192..-9ngn-1..-91) = v, and

then W(Oélbg...bkbkfl...bgal) = W(@1b19192---9n9n—1---glbl()él)-
If by = g1, then the claim follows by affirmation 1. Suppose that b, # g;. By Proposition

11



4.4 and Corollary B.7, we have that a; # by, and hence the claim follows by the induction
hypothesis.

Case (x): By Corollary 4.8, we have vb; ¢ W. Then there exists a # 1 such that v = ab;.
Since 7(vb1bg...bgbk_1...010) = T(VG1G2..-GnGn-1.--91v), it follows that w(abs...bybx_1...b1) =
m(ab1g192--Gngn-1---g1). Thus mw(abs...byby_1...bsa) = 7(abig192...GnGn_1---g1b1a), and the
rest of the proof is analogous to (ix). O

As a consequence of Proposition .4 Corollary [£.7 and Lemma .10l we have the following
result.

Corollary 4.11. Let b = biby...bybp_1..by € S and g = ¢192...GnGn_1...g1 € S be such that
bi,g; € R, bi_1 # b; and gj_1 # g;, for alli and j. If 7(b) = 7(g), then b= g.

Theorem 4.12. For every g € B(X)\ {1} there exist unique g1, ..., gm € R(X) such that
9 =7(9192--GmGm-1---91) and g; # gi1, fori=1,...,m — 1.

Proof. Let g = ajas...as € B, where a; = bibs...by, |a1] = |b1] = 1, and @;,b; € R, for all ¢
and j. First we will prove by induction on |g| that there exists s(¢) = g192-.-9mgm—1---01
such that m(s(g)) = g and g; # giv1, fori=1,...m—1.1f |g| = 1 or g € R, then s(g) = g.
Now suppose that |g| > 1 and g ¢ R. We have four cases:

(i) ¢', g" € W and g¢' # ¢'*. Then

s(g) = Agls_1...0201G a1 ...a5_1ag, if gt € R,
9= asbiby.. gty bias, if g € R,

(i) ¢ € W N S. Then there exist ¢y, ...,¢, € R such that ¢' = cie9...c0¢p_1...c;. Thus
g = m(ass_1...a2a1C1C2...CLCr_1...C1G1 ...a5_105), and it is clear that we can get s(g) from
this equation.

(iii) ¢* € W. Since m(g) # 1, we have that 7(g*) # 1 by Lemma Bl Then 1 < |7 (¢")| <
lg]. Tt is not difficult to see that m(¢') € B. By the induction hypothesis, there exist
1, .., ¢ € R such that m(¢") = m(cie...¢,¢1...c1), and by using similar arguments as in
(ii) we get s(g).

(iv) g" ¢ W. This case is analogous to (iii).

Now we need to prove that s(g) is unique. But this is a consequence of Corollary 11l [

5 Main theorem
Definition 5.1. In notation of Theorem .12 we put for any g € B\ {1} :

s(g) = g192---GmGm—1---G1-

Now, define a multiplication o on the set B(X) by:

(i)zrol=1lox =z,

(i) oy = m(@Y1Y2-- Ym¥Ym-1---y1), where s(y) = y1yo---YmYm—1---Y1-

Notice that the identities z o x = 1 and (x o y) o y = = can be easily obtained from the
definition above.
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Theorem 5.2. The set B = B(X) with multiplication o defined above is a free Bol loop
of exponent 2 with free set of generators X.

Proof. 1t is clear that X generates B and if B is a Bol loop, then the construction of R(X)
and Theorem give us a natural way to extend a mapping between X and another Bol
loop L of exponent two to a homomorphism from B into L. So we only have to prove that
B is a Bol loop. It is possible to prove this directly, but in this case we have to consider
many particular cases. We choose the other way based on the connection of Bol loops
with twisted subgroups described in the Preliminaries.

Let G = [ cpx) * < Ry|R? = I3 > be a free 2-group. The group G acts on B : bR, = boy
and bl; = b. Then the set H = {g € G|19 = 1} is a subgroup of G, where 1 is the empty
word of B(X).

Now, let B = {I;} U{R, |y € R(X)}“. Note that R,R.R, € B', for all y, 2 € R(X), and
then B’ is a twisted subgroup of G.

Lemma 5.3. G =HDB’

Proof of Lemma B3l Let g = [[I2, Ry, € G and y = ¢162...9m. Then 19 = n(y). If
m(y) =1, then g € H.

Suppose that m(y) # 1 and consider s(7(y)) = Y1Ya..-YxYr—1..-y1, Where y; € R(X). Note
that S(g) = Ry, Ry,...Ry, Ry, _,.-R,, € B'. We have that 159 = 7(s(n(y))) = 7(y), and
so 7(y)%9) = 1. Hence gS(g) € H and g = (9S(g))S(g) € HB'.

Lemma is proved.

Lemma 5.4. HN (B'B') = {14}.

Proof of Lemma B4 Let b = Ry, Ry,...Ry, Ry, ,..-Rp, € B’ and ¢ € B’ be such that
bc € H. By Lemma [A1] it follows that 7(b;y...by,...b1) # 1, and then ¢ # I;. Consider
c=R,R.,.. .R,R,._,..R.. Hence

(...(byobg)...) 0 by) 0by_1)...0b1)0cy)...)0¢k)...) o1 = 1. (5)
Since (xoy)oy = x, we get (...(by0by)...) 0by,) 0by_1)...0b1) = (...(c10¢3)...) 0¢k)...) 0 cy.
Then 7(b1ba...byby—1...b1) = w(c1c2...C...c1). By Corollary 11l we get that m = k and
c; = b;, for all i.
Lemma [5.4] is proved.
As a consequence of the Lemmas above and Proposition 2.1l we have the following result.

Proposition 5.5. (G, H,B') is a Baer triple. Furthermore, B’ with the operation
defined by bx b = ¢, where b’ = he, for some h € H, is a Bol loop of exponent two.

Now, let us conclude the proof of Theorem[5.2l We just need to prove that (B, o) = (B’, x).
Define ¢ : B — B by
©(Ry, Ry,...Ry, Ry, ,..Ry) = m(y1Y2.. . Ym¥Ym—1.-.y1) and ¢(I;) = 1.

By Lemma [4.1] and Theorem .12, we get that ¢ is a bijection.

Let b = R, R,,..R,, R, ,..R, € B and ¢ = R, R,,..R, R, ,..R, € B'. Consider
Y = Y192 YmYm—1---Y1, 2 = 2129...2n2n—1..-21 and U = yz1...2,...21. Note that ¢(b)op(c) =
m(y) om(2) = w(u).
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If 7(u) = 1, then n(y) = m(z). By Corollary .11, we have y = 2. Thus b = ¢ and
plbxc) = p(la) =1 = p(b) o p(c).

If m(u) # 1, consider s(m(u)) = uyug...uptp_y...u; and g = Ry Ry,...Ry Ry, ,...Ry,. By
the proof of Lemma[5.3] we have that bxc = g. Hence ¢(bxc) = ¢(g) = m(u) = p(b)op(c).
Therefore ¢ is an isomorphism and we have that (B, o) is a Bol loop of exponent two. [J

Proposition 5.6. H is a core-free subgroup of G.

Proof. Let N < H be such that N is normal in G. Suppose that N # {I;}. Then there
exists ¢ = Ry, Ry,...R,, € N, withn > 1, y; € R(X) and y; # y;11, for all 4.
Since 1¢ = 1, it follows that 7(y1y2...y) = 1. Then

(Y- Yoy1y2) = Yo. (6)

Since N <G and N < H, we have R, ¢R,, € H, and then 1R,,¢R,, = 1. Thus

1R,¢ = 1R,,, and hence y2¢ = yo. By (@), we get 7(Yn...y2v1y2)¢ = yo2, and then
Yo = T(Yn---YoY1Y2Y1Y2---Yn ), Which is a contradiction with Proposition (.41 O

Now we will determine the nuclei and the center of B(X). Firstly, we need the following
lemma.

Lemma 5.7. Let x,z € B(X)\ {1}. Then z==x o (x o z) if and only if x = .

Proof. Suppose that  # z and z = z o (z 0 2). Consider s(z) = 2129...2,2,_1...21 and
s(z 0 z) = uUg... U Upy—1...u1. Then

(U Upetty) = 0 2 = T(T21...29...21), (7)

m(zuy.. Uy y) =z 0 (x02)=2="7(21...20...21) (8)

By (@) and (&), we get m(u1...tpm...tt1) = T(21... 2 21U oo Uy U 21 . 2. 21). Then m =n
and u; = z;, for all 4, by Corollary LTIl Therefore z = 1, a contradiction. O

As a consequence of Lemma [B.7], we have that (zo (zo0z))oz # 1 =z0((xoz)oz2),
for every z,z € B(X) \ {1} such that  # z. It follows that Ny(B), N,(B) and N,(B)
contain only the identity element 1. Therefore we established the following result.

Corollary 5.8. The nuclei and the center of B(X) are trivial.

6 Open problems

We finish this paper with two conjectures.

If | X| > 1, it is easy to construct proper subloops of B(X) that are free Bol loops of
exponent 2. In the case of free loops (infinite exponent), it is well known that all subloops
of these loops are free [4, Corollary 1, pg. 16].

Conjecture 6.1. Every subloop of a free Bol loop of exponent two is free.
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Let Y = {y1,92,...,yn} be a free set of generators of B(X). For i € {1,2,...,n} and
v e (Y \{y}), define eq .y, fiv) : B(X) = B(X) by

(i) (Yi) = Yiv, faw(vi) = vy and eqn(y5) = fiao(Y5) = Y55

for every j € {1,2,...,n} \ {i}. The mappings e(;,) and f(;,) are automorphisms of B(X)
and they are called elementary automorphisms of B(X). An automorphism of B(X)
is called tame if it belongs to the group generated by all elementary automorphisms of
B(X). A question concerning free objects in varieties of loops is whether all of their

automorphisms are tame. For free Steiner loops the answer to this question is positive [0,
Theorem 7.

Conjecture 6.2. Fvery automorphism of a free Bol loop of exponent two is tame.
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